Global Informatics

- Информатика и вычислительная техника

Измерительный преобразователь для медного термопреобразователя сопротивления

термопреобразователь температура сопротивление

Измерению температуры придается большое значение в различных отраслях промышленного производства. Температура является наиболее массовым и, зачастую, решающим параметром, характеризующим различные технологические процессы металлургической, химической, энергетической и других видов промышленности. Точность измерения температуры очень важна для автоматизации процессов производства. В зависимости от необходимого диапазона и точности используют методы измерения температуры с помощью следующих средств:

- стеклянных жидкостных термометров;

манометрических термометров;

термопреобразователей сопротивления;

термоэлектрических преобразователей;

оптических и фотоэлектрических пирометров;

специальные способы измерения температуры.

Наиболее распространены методы измерения, основанные на преобразовании температуры в электрический сигнал. Большинство методов термометрии основано на изменении свойств материалов от температуры, которые регистрируются вторичными измерительными приборами, как унифицированными, так и специализированными.

В настоящее время в термометрической технике в результате высокой чувствительности вторичных приборов на первый план выдвигаются воспроизводимость свойств первичных измерительных преобразователей, устойчивость используемых материалов к воздействию внешней среды, надежность и долговечность всей конструкции датчиков температуры в условиях их эксплуатации. Помимо указанных качеств также следует принимать во внимание технологичность и стоимость используемых материалов и компонентов.

Целью курсовой работы по дисциплине «САПР устройств промышленной электроники» является разработка и моделирование в системе Micro-CAP схемы измерительного преобразователя для первичного преобразователя температуры, обеспечивающей заданные метрологические характеристики.

Термопреобразователь сопротивления (ТПС) - первичный измерительный преобразователь, электрическое сопротивление которого зависит от температуры. ТПС относятся к классу параметрических датчиков. Материал, из которого изготавливается ТПС, должен обладать высоким температурным коэффициентом сопротивления (ТКС), как можно более линейной зависимостью сопротивления от температуры и хорошей воспроизводимостью характеристик. Этим требованиям наиболее полно удовлетворяют платина (Pt), медь (Cu) и никель (Ni), имеющие положительный ТКС. Платина используется для измерения температур в диапазоне (-200…+1100) 0С; медь - для температур (-200…+200) 0С; никель - для температур (-60…+180) 0С. Лучшей воспроизводимостью характеристик обладают платиновые датчики (нестабильность градуировочной характеристики для лучших образцов не превышает 0,001 0С), а лучшей линейностью характеристики обладают медные датчики.

Стандартные платиновые термопреобразователи имеют обозначение ТСП, медные - ТСМ, а никелевые - ТСН. Номинальное сопротивление термопреобразователей находится в диапазоне единицы - сотни Ом.

Тепловая инерционность стандартных термометров сопротивления характеризуется постоянной тепловой инерцией, составляющей от единиц секунд до единиц минут.

При моделировании в Micro-CAP7 конкретный ТПС может быть задан в виде модели резистора по известному интерполяционному уравнению с учётом своего класса допуска.

Контроль над температурой составляют основу многих технологических процессов. Измерение температуры жидкости, газа, твердой поверхности или сыпучего порошка - каждый случай имеет свою особенность, которую необходимо понимать, чтобы измерения максимально соответствовали поставленной задаче. Существует множество датчиков температуры, построенных с использованием различных физических законов. Одни из них прекрасно справляются с конкретной задачей по измерению температуры, другие предназначены для универсального использования. В данной статье описаны основные типы датчиков для измерения температуры, их особенности, слабые и сильные стороны, задачи, для которых они предназначены.

Если рассматривать датчики температуры для промышленного применения, то можно выделить их основные классы: кремниевые датчики температуры, биметаллические датчики, жидкостные и газовые термометры, термоиндикаторы, термисторы, термопары, термометры сопротивления, инфракрасные датчики температуры.

Кремниевые датчики температуры используют зависимость сопротивления полупроводникового кремния от температуры. Диапазон измеряемых температур для таких датчиков составляет от -50 С до +150 С. Внутри этого диапазона кремниевые датчики температуры показывают хорошую линейность и точность. Возможность производства в одном корпусе такого датчика не только самого чувствительного элемента, но так же и схем усиления и обработки сигнала, обеспечивает датчику хорошую точность и линейность внутри температурного диапазона. Встроенная в такой датчик энергонезависимая память позволит индивидуально откалибровать каждый прибор. Большим плюсом можно назвать большое разнообразие типов выходного интерфейса: это может быть напряжение, ток, сопротивление, либо цифровой выход, позволяющий подключить такой датчик к сети передачи данных. Из слабых мест кремниевых датчиков температуры можно отметить узкий температурный диапазон и относительно большие размерами по сравнению с аналогичными датчиками других типов, особенно термопарами. Кремниевые датчики температуры применяются в основном для измерения температуры поверхности, температуры воздуха, особенно внутри различных электронных приборов. Например можно назвать температурные регистраторы компании Dallas semiconductor выпускаемые под маркой THERMOCHRON. Регистраторы имеют кремниевый датчик температуры, микросхему обработки сигнала и память для сохранения результатов.

Биметаллический датчик температуры, как следует из названия, сделан из двух разнородных металлических пластин, скрепленных между собою. Различные металлы имеют различный коэффициент расширения при той или иной температуре. Например, константан практически не расширяется при температуре, железо, напротив испытывает заметное расширение. Если полоски из этих металлов скрепить между собой и нагреть (или охладить), то они изогнутся. В биметаллических датчиках пластинки замыкают или размыкают контакты реле, или двигают стрелку индикатора. Диапазон работы биметаллических датчиков от -40 С до +550 С. Биметаллические датчики используют для измерения поверхности твердых тел, реже для измерения температуры жидкости. Основным преимуществом датчиков является простота и надежность конструкции, возможность работы без электрического тока, низкая стоимость. Вместе с тем, биметаллические датчики температуры имеют большой разброс характеристик, а так же большой гистерезис переключения, особенно при низких температурах. Основные области применения биметаллических температурных датчиков - автомобильная промышленность, системы отопления и нагрева воды.

Статья в тему

Корректировка номиналов тонкоплёночных элементов гибридных интегральных схем
Сопротивление пленочного резистора определяется па формуле R=ρ0l/b= ρ0Kф (1.1) где ρ0 - удельное поверхностное сопротивление резистивной пленки; l, b - длина и ши ...

Главные разделы


www.globalinformatics.ru © 2018 - Все права защищены!